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SUMMARY

The analysis of resonant satellite orbits has been pursued for 18 years,
and has led to the most accurate valves available for lumped geopotential har-
monics of the relevant'orders. The basic theory for the resonance effects was
developed in the 1960s, but the detailed application of the technique calls for a
systematic notation and for the evaluation of two subsidiary functions, namely
F, a function of the orbital inclination, and G , a function of the eccentric-
ity. The present paper sets out explicitly the variations in inclination and
eccentricity produced by relevant harmonics at the most common resonances (15:1,
14:1, 1631, 29:2 and 31:2), using the notation that has become standardized in
recent years. The paper also gives appropriate expressions for calculating F

and G , with a new Portran program GQUAD for evaluating G .
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i INTRODUCTION

The orbit of an Earth satellite is in resonance with the gravitational
field when the track of the satellite over the Earth repeats after an integral
number of revolutions. Daily repetitionus give the strongest effects, but 2-day
repetitions are aiso of interest. A theory for such resonant orbits was devel-
oped in the late 1960s by Allan' 3

that experience resonance as they decay under the action of air drag. The

and has been much used in analysing orbits

analyses have yielded values of lumped geopotential harmonics of relevant order,

and these values are usually of better accuracy than can currently be achieved by

any other method. The first such analysis, by Gooding4 in 1971, treated the
1Sth-~order resonance of Ariel 3, and the orbital resonances of about 35 other
satellites have subsequently been analysed, to determine lumped harmonics,
chiefly those of order 14, 1S, 16, 29, 30 and 31: from these analyses individual
harmonic coefficients have been evaluated for orders 14, 15, 16 and 30 - see
Refs 5 to 7 and the papers referred to therein. Nearly always it is the orbital

inclination i and eccentricity e that have been analysed.

Allan's theory is in a genmeralized format, and when analysing specific
resonances it is necessary to have a systematic notation and to decide how to
evaluate the functions F and G that arise. The present paper gives explicit

forms for the rates of change of inclination and eccentricity at the resonances

most frequently analysed. (The expressions are largely from a list that has been

used in manuscript since 1974.) The evaluation of F is discussed and a useful
recurrence relation is given. A Fortran program for the evaluation of G is

listed, together with series expansions suitable for small enough e .

2 STANDARD NOTATION

A satellite orbit is said to experience B:a resonance when, loosely
speaking, the ground track repeats after B revolutions and a days. Thus
15:1 resonance, also known as i5th-order resonance, implies that the track
repeats daily, after 15 revolutions. Similarly, 29:2 resonance occurs when the
track repeats every 2 days, after 29 revolutions. Diagrams showing the orbital

periods and semi-major axes for exact resonance have been given by Allan3.

The longitude-dependent part of the geopotential at an exterior point

(r,8,)) can be written as

"l

=2 m=1

z XG )EP';" (cos 8) Nm{ﬁm cos m) + §1m sin m} s m
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where r is the distance from the Earth's centre, 8 is co-latitude, A is
longitude (positive to the east), | is the gravitational comnstant for the
i Earth (398600 km3/sz), R is the Earth's equatorial radius (6378.! km),

S P;(cos 6) 1is the associated Legendre function of order m and degree & , and
Ezm and §zm are the normalized tesseral harmonic coefiicients. The normaliz~
ing factor Nlm is given by

2 2(22 + 1)(2 -~ m)!
Nw = (T + m! ’ 2

when m > 0 .,

The variations in the orbital elements for near-resonant orbits depend

primarily on the resonance angle ¢ defined by
¢ = aw+ M)+ B8(Q-v) |, (3)

where w 1is the argument of perigee, M the mean anomaly, £ the right ascen-

sion of the ascending node and v the sidereal angle. Exact resonance occurs
when ¢ = 0 , and in practice the effects of resonance are usually significant

when ¢ is between =10 and +10 deg/day.

4 The general term Uzm , say, in equation (1) may be written in the form

el

4 &.
§ L
{
; - (R f- Aem= .z . _
i Ulm Z a(a Flmpcﬂ,pqa[‘] (Cm1 Jslm) exp{J(yﬁ’ qm)}] . %)
4 ' p=0 q==co
’ where a is the semi major axis, ® denotes 'real part of', j = V=1 and the
1 quantities F, G, y, p and g will be discussed later. With this notation, it
can be shown that the rate of change of inclination i caused by each pertinent
. pair of coefficients, Ezm and §2m , near B:a resonance, is given by3
| di . lq—‘—i’i.i(Efi G (kcosi—m)a["""”(é - 35, ) exp{j(yé - qu))
dt sin i a | fmp %pq J tm JSgn) €XPULY qu ’
veeess(5)

where n =M, and e 1is the eccentricity of the orbit.

The indices vy, k, p and q in equation (5) are integers, with y taking
the values 1, 2, 3,... and q the values 0, *1, #2,,.. ., The equations linking

L, m, k and p are:

B R VU PR
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5 3
m = Y8
. k = ya~q . (6)
s } ’ L = k+2p

For a specific resonance, with a and 8 known, the choice of y deiines the
relevant value of m (and vy = | is nearly always domirant); the choice of a

ﬁ particular q then defines k (with g =0 or q = tl nearly always dominant).

i ]F For each chosen pair of values of (y,q) there is a range of legitimate values

¥ for & , defined by the two requirements that £ #m , from equation (1), and

that £ - k is even, from the last of equations (6). (Also & 2k , but this is

nearly always weake- than £ ®m .) Thus (assuming k < m), the lowest possible

b 3 value of & , 10 say, is either m or m+ | , and 20, !.0 + 2, 2.0 + 4, ...

then all contribute to di/dt . As 2 — k must be even,

; ,‘0 = m if m -k 1is even
] . )
2.0=m+l if m-k is odd
For near-polar orbits the £ = ILO term in di/dt is usually the largest; as
1 the inclination decreases, however, higher-degree terms tend to dominate.
J f? We now turn to the two symbols in equation (4) that have not yet been
é defined. The first, ill.mp , is the normalized inclination function given by3
1 4
_J _ N2 + 1t _ _
| : 7, Z( b (g, SRRSO\ )220 o oeeke20
1 mp 2p!(!. P! L =-m-o0
| veesaa(8)
1
n n!
where denotes the usual binomial coefficient ) and the summation
. !

is over all values of ¢ from max(0,k-m) to min(2-m,2+k) . (Note that if m

" is large, > 10 say, it is most unlikely that terms with |k| > m will arise:

wy

[a)

2 thus the summation is nearly always from 0 to 2 -m .) When 2 =m,

-1

& equation (8) takes the simple form
- i
Foo- 120@mr DI} (ooq 45y™(ein 1)™* ©®)
P 2pi(m - p)!




but in general there are many terms in the series, and F is best evaluated bv

. 9 . . s
means of a recurrence relation”, as explained in section 6.

The second of the symbols Glpq , is a function of eccentricity defined by
Kaulas, and is the same as the Hansen coefficient X;f;l’k to be found in the

lal .4

textbooks of celestial mechanics (eg Ref 10). As Glpq is of order e
e is usually small in the resonances analysed, values of q greater than 2 are
rarely significant in practice. Section 7 describes methods for ihe accurate and

approximate evaluation of G .
P 1pq

The same functions F and G arise in the equation for the rate of change
of eccentricity due to a relevant pair of coefficients, alm and §lm , near
B8:a resonance. From equation (58) of Ref 3, we have:

2
g_: = e l("ez)é(g) 1?nmpcmpq’(k“’)(’""2)i'km[-'m-m”(Cm'jsm) *
x exp{j(y® - qw)}] . (10)
3 TWO NEW SYMBOLS

To save space, we introduce new symbols for two quantities that are

required throughout sections 4 and 5.
First, we write

B, = n(l -e2)°*(§)£ , (an

to abbreviate the multiplying factor that applies to both di/dt and de/dt .

Second, we write

H = C -Jsmm , (12)
the symbol H being intended to signify a (combined) harmonic coefficient.
Logically, H should have the suffix 2m , but this is dropped because 2 and
m are the same as in izmp and these are always given explicitly. With this
notation, the real part of the quantity in square brackets in equation (5) may be

expressed, for £ =m , as

R[H exp j(vo - qw)] = —{Ezm sin(y® - qu) - §2m cos(y® -~ qu)} (13)

SE088 4l
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and, for 2 =m+ 1 , as
A% exp j(v2 - q)) = - {5, sin(vé - qu) + T, cos(ye - qu)} .  (14)

4 EXPLICIT FORMS FOR THE TERMS IN di/dt

For a specified resonance, the terms with (y,q) = (1,0) arc usually the
most important in equation (5), followed by the terms with (y,q) = (2,0), (1,~1)

and (1,1). All these terms, and some others, are given in the lists below.

For each (y,q) there are contributions from pairs of harmonic coefficients
Elm and §lm of degree 20, lo + 2, 10 +4 , ..., and it is necessary to
include many of these if the orbit is of low inclination. The iists below give,
for each (y,q), only the term with. L= 20 : the procedure for generating the
terms with higher 2 is summarized at the end of this section. In the lists,
which now follow, we have written j2 explicitly (rather than as -1), to

indicate how the formulae run.

15:1 resonance d = w+ M+ 15(Q - v)
(v,q) = 1,0) 315§]5,15’7G|5,7’0(cot i - 15 cosec i)R[jH exp jol
v,q) = (2,0) B30F30’30’14G30’14’0(2 cot i =~ 30 cosec i)R[jH exp 2j¢]

(v,q) (3,0) 0(3 cot i ~ 45 cosec i)R[jH exp 339l

BusF4s,45,21%5,21

(v,@) = (1,-1) _1(2 cot i - 15 cosec i)ﬁ[jZH exp j(¢& + w)]

B16%16,15,7%16,7,

and (1,1) (0 - 15 cosec i)R[jZH exp j(¢ - w)]

B16¥16,15,8%16,8, 1

(v,q9) = (2,-1) _](3 cot i - 30 coseci)ﬂﬁzﬂ exp j(2¢ + w)]

B31F31, 30,1431, 14,

i
i
i

and (2,1) l(cot i - 30 cosec i)ﬁ[jzﬂ exp j(20 - w)}

B31F31,30,15%, 15,

(v,q@) = (1,-2) Blsi15,15,6G15,6,-2(3 cot i = 15 cosec 1)R[jH exp j( + 2uw)]

and (1,2) BISF15,15,8G15,8,2(- cot i = 15 cosec i)R[jH exp j (¢ - 2w)]
(v,q) = (2,-2) B3OF30,30,|3G30’13’_2(4 cot i - 30 cosec i)R[jH exp 2j(& + w)]

and (2,2) (0 ~ 30 cosec i)R[jH exp 2j(¢ - w)]

B30F3¢, 20, 1560 15,2




14:1 resonance

(Y;q) - ("0)

(qu) = (2,0)

(qu) = (ly-l)

and (1,1)

(v,q) = (2,-1)

and (2,1)

(Y’q) - (11-2)

and (1,2)

16:1 -escnance

(v,@) = (1,0)

(Y!q) = (210)

(Y’Q) = (1,~1)

and (1,1)

B15’?15,14,7‘;15,7,0
B,4¥ 13,28, 13528,13,0(2 °*
B14F14,14,6514,6,-
B14F14,14,7514,7,1
BagF29,28,13529, 13,1

B29¥29,28,14%29, 14,1

Bi6"16,16,8%16,8,1

O = w+ M+ 14(Q - V)

(cot i - 14 cosec i)ﬁ[jzﬂ exp j¢l

i - 28 cosec i)R[jH exp 2j¢)

l(2 cot i - 14 cosec i)8[jH exp j(¢ + w)}

(0 - 14 cosec i)&[jH exp j(¢ - w}]

(3 cot i - 28 cosec i)R(jZH exp j(2¢ + w)}

(cot i - 28 cosec i)R[jZH exp j(26 - w)i

= : 2 .
i - 14 ] d +
BlSFIS,li,EGIS,E, 2(3 cot i 14 cosec i)R[;"H exp j( 2w)]

= . . .2 .
BISFIS,IA,SGIS,S,Z(- cot i - 14 cosec 1)R[;“H exp j(& - 2w)]

& = w+ M+ 16(0 - V)

= . . .2 .
Bl7Fl7,16,8GI7,8,0(c°t i - 16 cosec i)R[j°H exp j&]
B32F32’32’]5G32’15’0(2 cot i - 32 cosec i)&[jH exp 2j9]

F i-i c DOH exp j(8 &
B 6F16,16,7016,7,-1 (2 ot 1 - 16 cosec LIELR exp j(& + ]

(0 - 16 cosec i)R[jH exp j (& - w)]

GE088 ¥l
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29:2 resonance ¢ = 2(w + M) + 29(q -~ V)

4 ‘ . .2 .
(v,q) (1,0) B30F30,29"AG30"4,0(2 cot i ~ 29 cosec i)R[j°H exp j¢l

(v,q) = (2,0) 358F58,58,27658,27,0(A cot i - 58 cosec i)R[jH exp 234}

(v,q) . = (1,-D 329F29,29’|3629’|3'_|(3 cot i -~ 29 cosec i)R[jH exp j($ + w)]

and (1,1) (cot i ~ 29 cosec i)8[jH exp j(¢ - w)]

B29%29,29,14%29, 14,1

= . . .2 .
(v,q) = (2,-1) BS9F59,58,27659,27,-1(5 cot i ~ 58 cosec i)R[j°H exp j (20 + w))

and (2,1) (3 cot i - 58 cosec D)RIj%H exp j(20 = w)}

BsgFs9, 58, 28%59,28, 1

= . s .2 .
(v,q) = (1,-2) B3OF30'29']3G30’]3‘_2(4 cot i ~ 29 cosec 1)R[j“H exp (& + 2w)]

(0 - 29 cosec i)ﬂ[jzﬂ exp j(& - 2wl

and (1,2)  BygFq4 59 15630,15,2
31:2 resonance ¢ = 2(w + M) + 31(Q = V)

= . . .2 .
(v,a) = (1,0) B3ZF32,3l,lSG32,IS,O(2 cot i - 31 cosec )R H exp j?)

v,q) = (2,0) B62F62,62,29G62,29,0(4 cot i -~ 62 cosec i)®[jH exp 2j9]

(v,q) = (1,=1) 531F3i,31,|463\,14,-1(’ cot i - 31 cosec i)R[jH exp jv + w)l]

and (1,1) {cot 1 ~ 31 cosec i)R[jH exp j(¢ -~ w)]

B41F31,31,15%0,15,1

As stated at the beginning of this section, the lists give only the terms
for & = &y, and there are additional terms for 1 = %, + 2, Lo t+h, zo+ 6,00
These additional terms may easily be derived from equation (5) which may be
rewritten as
di

= = (k cot i -~ m cosec i)Bzf G

[.’.‘l‘h“‘
dat fmp Lpq

H exp j(vy¢ - qu)] ; (15)
here Bl is given by (il), and the suffix £m has been restored to H , which

is given by (12). For specified values of (a,B) and (y,q), the indices k and m

eI R
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in equation (15) are constant, and it is helpful to gather the terms of degree

LO, lo +2, 2

monics as

+ 4, ... into a 'lumped harmonic'. We write these lumped har-

q,k j{: q,k :E:

c = q, k= S - q,kg

Cm Ql Cll,m and Sm Ql Sf,m , (16)
2

[

0

where ¢ 1increases in steps of 2 from its minimum permissible value, Lg s and

it is convenient always to take Qj’k =1, Then we see, from equation (15),
that
BF G J(r=2.)
Qz’k = __.%riEﬂLEBS___.(_l) 0° (17)
B F G

%o Lo™Pg %oPod

The series of terms that arises is best indicated by an example: we choose
14:1 resonance and the term with (y,q) = (1,-1) , for which k = 2 from (6).

The contribution of this term to di/dt is given by

di _-lrz _"I,Z
l(7 coseci=- cot 1)3(:]4 sin(¢ + w) - SM

Fra

B1aF14,14,6%4,6,- cos(e + wyy, (18)

where equation (13) establishes the terms in curly brackets and

6—1,2 .z ‘(5)2f,5,14,7c16,7,-l : . (BYFWB,IézacIB,B,—I < )

14 14,14 \a 7 ¢ 16,14 al g c 18,14  °°°

14,14,6°14,6,-1 14,14,6714,6,-1
e (19)
-9k

and similarly for S . Explicit forms for other Cm may be found in Refs 1!
and 12.
5 EXPLICIT FORMS FOR THE TERMS IN de/dt

If we introduce Bl from equation (11) and H from equation (12), the

expression (10) for de/dt becomes

de

- -1
_ = G
dt BoF mptapq®

(- e+ 0 - et - IRLGY™ Y exp j(ve - qu)] . (20)

S£088 AL
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On expanding in powers of e and replacing k by ya - q , we have

~1

de e
2pq

= 2 4 A-m+] . *
Fri BlFlmp {q -~ fe"(ya + 2q) + e ya + ...}8[; ™ exp j (yo - qu)] . (21)

G

In the explicit forms below we ignore terms that are O(ez) relative to the main
term. When q # 0 , the necessary correction factor is {1 - £e2(2 + yu/q)-ko(eé)}.
When q = 0 , the correction factor is {1l - 2e2 + O(eA)}. The expansion in
powers of ez is very helpful because e < 0.01 for most of the orbits analysed.
For larger values of e , the unexpanded form can be used: the term in curly
brackets in (21) should then be replaced by (1 - eZ){q + ya(l - eZ)Q ~ vyal.

Again the lists give, for each (y,q), only the term with 2 = 20 .

For a specified resonance, the terms with (y,q) = (1,-1) and (1,1) in
equation (2]) are usually the most important for a low-eccentricity orbit
(e < 0.2). The terms next in importance are usually those with (y,q) = (2,-1)
and (2,1); the terms with (y,q) = (1,-2) and (1,2) may also be significant when

e > 0.01

15:1 resonance ¢ = w+ M+ 15(0 ~ v)
(v,@) = (1,-1) =B F G 7152 exp j (0 + w)l
’ ’ 16°16,15,7°16,7,~1 3 P J

= ~1gr.2 .
and (1,1) BI6F16‘15,BG'6,8"e RI;°H exp j(@ - Wl

- Slg.2 ,
(oa) = (2= =By Fyy 3014831, 14,18 RLTH exp j(20 + W)

- =150.2 .
and (2,1) B31F3l,3C,15G3‘,15,Ie RIiH exp (20 - w)

(v,@) = (3,-1) - B46§46,45’21G46,2l’_'e-lﬁ[jzﬂ exp (3% + w)]

- “lg.2 .
(,@) and 3,1)  BygF\ 0 45 95646,22,1¢ SUITH exp (30 - )]

* Note that the coefficient of Qez , namely (ya + 2q), is equal to (k + 3q),
whereas (k + q) has been given (incorrectly) in several previous publications,
beginning with Ret 13. The error is of no consequence, however, because the
term is used only when q = 0 , and then both the correct and the incorrect

forms reduce to k .
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(v.q) = (1,-2)
and (1,2)
(vo@) = (1,0
G = (2,0
(v, = (2,72)
and (2,2)
14:1 resonance
G,q) = (1,=D
and (1,1)
(v,a) = (2,1
and (2,1)

16:1 resonance

(y,a) = (1L,=D
and (1,1)

29:2 resonance

(Y.Q) = (l,-l)
and (1,1)

31:2 resonance

v, Q) = (1,-1

and (1,1)

- -1
- 5 i
23!5F15,15,6G15,6,-2e R{H exp (O + 2w)}

- -lars .
2B,<F\5 15,8%15,8,2° RL5H exp (¢ = 20)]

- “‘15"15,15,7(;15,7,0‘*6“JH exp 9l

~B30¥30, 30, 14°30, 14,0 LiH exp 2j¢)

- oy .
- 284.F 45 30,13%30,13,-2° (58 exp 25(0 + w))

= =lars .
ZB3OF30,3O,ISG30,15,2e /i1 exp 2j(20 w)l

$ = w+ M+ 14(Q = V)

= -lag: .
—B\AFIA,IA,6GIA.6,~1e R{iH exp (P + w)]

F —]ﬁljﬂ exp j(& - w)]

B F 14, 14,754,707

= S . .
-329?29’28,13629"3’_1e Ri°H exp i(20 + w)}

- a2 .
B,oFyg,28, 14529, 14,1° Rli%H exp (20 - W)

P = w+ M+ 16(Q ~ V)

- -1 . .
-B ¢ 16,16,7%16,7,~1° RIjH exp j(& + w)]

- gy, o
B,¢F6,16,8%16,8,1° fl5H exp 30 = W]

& = 2(w + M)+ 29(Q = V)

- -1 . .
~Byg¥2g,29,13%29,13,-1° RUiH exp (0 + W)

= -lors .
B,oF29,29,14°29,16,1° RUiH exp §(0 ~ W

o = 2(w + M)+ 31(Q = V)

s -1o¥: .
By, ¥5p,31,14%31,14,11° R exp j(¢ + W]

= -1 . .
By F3y 31,15%31,15,1° Rt exp j(@ =~ W]

g v
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As with di/dt , the terms above are thosz for & = 10 s the additional
terms, for 1 = lo + 2, 20 + 4, 20 + 6, ..., can best be expressed in terms of the
lumped harmonics defined in equations (16) and (17). Again it may be useful to
give an example: we choose 15:1 resonance and the terms with (y,q) = (2,1), for
which k = ] from equation (6). The total contribution of this term to de/dt

is given by

b 1,1 1,1
de = -1yz 7’ s =
L ~ e 331F31,3o,15631,|5,1e 1830 sin(2¢ w)+030 cos(20 - w)} , (22)
1 4 vhere equation (14) establishes the terms in curly brackets. In equation (22),

L s _(3)2 F33,30,16%3,16,1 5, (5)“ F35,30,17%35,17,1 ¢
3,30 ~\a 33,30 *\3

; ‘ * E31,30,15(;31,15,1 r:31,30.15(;31.'5,1 .30
g ...... (23)
% and similarly for C .
g 6 EXPLICIT FORMS FOR THE INCLINATION FUNCTIONS
g The inclination function ilmp is given by equation (8), but it is con-

venient to split this into two factors, the first being a series which is free of

&
ebm

large numerical values like (2 + m}! , while the second is a single quantity that

provides an efficient combination of the various large values.

The first factor, introduced from Ref 9, is A:m

which, for k Sm , is given by equation (14) of Ref 9 as

o —
s

(a function of 1)

L~m
m
1' Atmg 2 m)!(l;_; m! % Z ~n°ft* k)( . k) (cos ii)u_m*k 20
(mt(e+)1s” "(1+C)" =~ o L-m-g
x (sin i) K20
caeeso(24)

where S =38ini and C = cos i . It is shown in Ref 9 that Atm satisfies

o)
B, | TITYTMRMPON T 4T e i e A T A U T
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for which (when k < m) the starting values are

k k . $2m+ D{(m+ 1)C - k}
ﬁnm =1 Am+l,m m+ 1 +k ¢ (26)
Thus A§+2 n cen be found by substituting (26) into (25), with £ = m + 2 ; and
bl

so on up the line. (Ref 9 also gives starting values for m < k , but these are

irrelevant here.)

We may now write

= k k
F!.mp = Azmvzm ’ @7

where Vtm has a 'normalizing' role and, from (8) and (24), is given by

K Cm)1 (L + k)!sm'k(l + C)k 2(22 + (2 - w)! : . 28)

v =
w 2P s myt e+ 0IHG - 0] (2 + m)!

The general form of the F functions is usefully clarified by the split
between V and A . From (26), A:m is constant; A;+l o is linear in
t]
C (=cosi) and has one zero at C = k/(m+1) , which is quite near i = 90° if

k<€¥m , as is usual; from (25), Ak is a quadratic in C , and generally has

k o2, m
two zeros; Am+3,m is akcubic in C , and usually has three zeros; and so on.
Thus the variation of Alm with inclination becomes increasingly oscillatory as
£ increases. This oscillatory function is to be multiplied by Vtm , in which
the term Sm-k = (sini)m—k dominates the variation with inclination if kx € m.
When m 1is large, there is a strong maximum of Sm.k at i =90°, with a rapid

decrease at lower inclinatioms.

This behaviour is illustrated by Figs | and 2 (taken from Ref 3) which show
the variations of some of the F with inclination, for 15th- and 16th-order
resonance. The dotted lines at i = 90° have been added to make it clear that
the curves are not symmetrical about i = 90° . More extensive diagrams for

15th order, up to 2 = 33 , have been given by Klokoénikla.

When £ # m , there can be numerical problems associated with the computa-
tion of F . Methods for avoiding these problems are reviewed in Ref 13,

From the recurrence relations (25) and (26), the values of the A:m

required for the Flmp that occur in the lists of sections 4 and 5 are as

follows.
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As,is
Mg, 15

A3),30
As,is

A30,30

15, 14

2
S TRTA
Ay9,28

Ays, 14

A7
A6, 16
A30,29
29,29

A5, 58

4
Ay0,29

Ay,

31,31

31(8C - 1)

9

61(31C - 3)

34

29(15¢c - 1)

16

57(29C - 3)

32

29(5C¢ - 1)

6

33(17C - 1)

18

59(15C - 1)

16

117(59C - 5)

64

59(30C - 4)

34

63(32¢ - 2)

34

A30,30
Aig1s

1
231,30

-]
As,is

430,30

As,28

STITA
|

Ay9,28

-1
A5, 14

432,32
Als,16
Asg, 58
829,29

Asg, 58

A10,29

A2 62

A31,31

3iC

61(31C - 1)

32

19(29C - 1)
=

29(i5C + 1)

14

117(59C - 3)

62

59C

15
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7 EVALUATION OF G
pq

7.1 Accurate computation by quadrature

As explained in the Appendix, the best general expression for the eccen-

tricity function G is in terms of a definite integral, as .

Lpq i

+1 ‘
-1,k 1 a . '
Glpq = xk#q T o= - / (?) exp jlkv - (k + q)M}dM , (29) :

wvhere v 1is the true anomaly and

a 1l + e cos v
< —_— (30)

A Fortran program, GQUAD , to evaluate Gz q from (29) has been written

by A.W. Odell, and a listing is included in the Appendix.

7.2 A truncated-series approximation, for small e

If e 1is small, it is possible to express G
q

as a power series in e

tpq lal+2 _lql+s’
e ’

the main term being of order e with smaller terms of order . €

... + The expressions that arise are very involved, however, and it is not
easy to know how many terms are needed in a given application. What 7s fairly

easy is to derive a formula for the coefficient of e a4

in the leading term
(monomial) of Glpq : this monomial is itself expressible as a polynomial in the

constant yoa . For a given application, the values of G thus obtained can

ipq
be checked against those calculated from the integral (29) to assess the range of

validity of the truncated-series approximation.

From equations (59a) and (59b) of Ref 2, the required approximation for

Gzpq , Written in terms of 2, k and q , is
g - _ 3
6. = (-le)? u_y_( s “)+ 0(e7*2) if >0 ,
Lpq ol -
o= 1
L . (31 -
=
- ° 4. - 2
= (-je)? rq L k\f O(e q+2) if ¢<0 S
4 ol -q=-a) v
i
;
Al B T IR NER e e e e e
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| Note that k + q = ya from equation (6). We now ignore the O-terms and write
; G as é, as a reminder of this omission. In most applications [q] €2, and
; ! equations (31) then give:
& .0.0 1, (32)
. ]
Gy ooy = fe@-2k+ D)
(33)
Gz,p,l le(e + 2k + 1)},
” 2 2
G = Fe“{(L + 1)(8 + &) -~ k(4L + 9) + 4k°}
2,p,~2
(34)
é - gez{(z + 1D+ 4) + k(42 +9) + w?y .
2"p'z
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For orbits of small eccentricity, all the G functions appearing in the lists

in sections 4 and 5 can be evaluated approximately by the use of equations (32) to

(34). A selection is given below, with the values of vya .

16,7,-1 = Ole €16,8,1
€31,14,-1 = 13 31,151 ~
é - 16§e2 é

15,6,-2 15,8,2
e 75{e2 G

30,13,-2 30,15,2
€14,6,-1 = Sle Ci4,7,1 *
€39, 13,-1 12e 629,14,1
C31,14,-1 loe 631,15, 1

Equation (33) shows that ézpq is of order

equation (34) shows that &
q (34) pq

8le
17e
29§e2
13172
7ie
l6e

16e

2.2

is of order 3i°e

jre for

Iql = 2 , assuming

(vya
(ya
(ya
(ya
(ya
(ya

(ya

[af

1

2)

1)

2)

2)

, and

lk| €2 . These numerical values are crucial in assessing the likely importance

of terms in q = +1 and q = £2 , For example, if

resonances' can be more important than the 'main resonance', as in Wagner's
analysisl6 of Vanguard 3, for which £ = 11 and e = 0,19 .

te > 2 , these 'subsidiary




To generate é for high values of gq , it is best to use a recurrence

Lpq
relation. For q > 0 , it can be shown that

. e - N
- + 1 +k + 2(2 + ) + 2K)G 35
Sopa = 7g ¢ 50,02 7 2 Xep.a 3
and, for q < 0 , that
- e n N
Gzpq - E{e“” k)Gl,P’qn +2(0 4+ 1 - 2k)cz'p’q+]} . (36)

The utility of G as an approximation to G is indicated in Figs 3 and 4,
in which Gzpqlé 2q is plotted against e for selected values of (2.p,q). Fig3
shows that C is useless as an approximation for large e . But for nearly all
the orbits analysed at resonance, e has been less than 0.01, and, as Fig 4 shows,
the use of G as an approximation for G 1is rarely in error by more than 1Z.

As the observational errors in the values derived for the lumped harmonics are
3% or more, the use of G does not significantly degrade the accuracy of the

analyses.

7.3 An accurate recurrence relation for the Gzpq

As already indicated, the analytical derivations of the Hansen functions
are very involved, and these functions have been much studied (eg Refs 17 to 22).
It is largely because of this complexity that the power-series expansions are only
satisfactory for small e . A number of exact relationships between the functions
have been discovered, however, that are free of quadrature. Omne such relation,
given by Giacagliazo, allows values of Gﬂpq to be computed by recurrence from a

basic set of values. The relation is

- 1 _ (&~ De _
GR’Pq - Zk(l-ez)l 2(e + q)cz-zpp-l’q Qa - ez); (Gﬂ-'laP'I.Q'l Gl‘hpﬂl"‘”{ .

an*

The patterns of the suffixes is not immediately obvious in equation (37); the key
is that k + q has the same value for each of the four G functions. Since

k + q = yo in resonance analysis, the relation is directly applicable; however,
the 'basic values' still have to be computed, and this limits the usefulness of

the relation.

* In Ref 20, (£~1)e 1is wrongly given as (£+1)e . We believe that the
correct formula was given earlier by P.J. Cefola.
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The G functions have simple closed-form expressions when k + q =0 .
We can distinguish such G functions by suppressing the suffix p , so that (for

2,-3/2 _ 27572
example) G, 0" (1 - e%) and G3,l G3,-l =e(l - e)

’
follows from equation (29) that Gl s = 0 if & > 0 . Equation (37) now

, whilst it

reduces to

G, = L=De (

)y (38)
9 500 - &)

g-1,q-1 ~ Ca-1,q+1

valid for q#0 . Taking £ =3 and q = *! confirms the expressions for
G. and G already quoted, given G , and leads on to
3.‘ 3," 2,0
2)-7/2

2
04’2 = Gl"_2 = 1e"(1 - e etc.

8 COMMENTS ON THE NOTATION

Any attentive reader of this Report will have noticed a certain ambivalence
of notation over the indices p and k , one of which is always redundant,
because k + 2p = 2 . We regard k as the more useful of the parameters, for
two reasons. First, most formulae are simpler and more revealing in terms of
k . Second, k provides symmetries unattainable with p : in equation (4), for

example, )  could be replaced by ) , though with the caveat that the summation
p=0 k-2

is in steps of 2, that is, =%, =2+ 2, ..., £ -2, & .

So we considered rewriting ilmp(i) as iim(i) , following Ref 23, and
Gzpq(e) as G%q(e) . However, the use of Elmp and kaq has become 8o
widespread that it is now 'standard': this consideration, and the absence of a
recognized notation for summation in steps of 2, deterred us from amending the

notation, though we have used the affix k with A and V 1in section 6.

There would also be some advantage in defining an extra symbol to represent
k + q , vhich arises in equations (20), (29) and (31). Here we have been able
to identify k + q with +ya ; but equations (29) and (31) are independent of

resonance and might benefit from the extra symbol.

Finally, we should draw attencionkto the fgcﬁ that our definition of, and
notation for, the lumped harmonics E:' and §m’ in equations (16) differs
from that adopted by Klokocénik in his extensive studies of resonance (see, for

example, Ref 24),

9 CONCLUDING SUMMARY

In conclusion, it may be useful to summarize the main results presented in

this Report.
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Equations (5) and (10) give general expressions for the rates of change of
orbital inclination i and eccentricity e near resonance caused by a pertinent
pair of harmonics, in terms of the resonance angle ¢ defined in equation (3),
and the functions F and G . Specific forms for the term of lowest degree 24
at the resonances most often encountered (15:1, l4:1, 16:1, 29:2 and 31:2) are
given in section 4 for di/dt and in section 5 for de/dt . It is shown how

these terms can be combined with those of higher degree (2 = 2 * 2, L.+ 4, L))

0
into a lumped harmonic, defined in equations (16) and (17).

The function F , which depends on inclination, is evaluated in section 6
by writing F = AV , where explicit expressions for A are derived from the
recurrence relation (25), and V is anormalizing constant given by (28). Figs |

and 2 give examples of the variation of F with inclination.

The function G , which depends on eccentricity, is most easily evaluated
from a definite integral, equation (29), and a Fortran program (GQUAD) written by
A.W. Odell for this purpose is listed in the Appendix. When e 1is small, a
series expansion of G 1is useful, and explicit forms are given for G (the
first term in the series) based on equation (31)., Figs 3 and 4, which give the
variation of G/ with e , show that G, though useless as an approximation
when e is large, is accurate to 1% if e < 0.01 , as with most of the reson-
ances that have been analysed. The values of G , rather than G , have been
used in a new determination25 of harmonics of 15th order and 30th order: the
main effect is that the 15th-order coefficients of odd degree are altered by

about a quarter of a standard deviation, on average.
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Appendix
A FORTRAN-77 PROGRAM, GQUAD, FOR COMPUTING G-FUNCTIONS BY QUADRATURE

A.l Introductory remarks

As indicated in the mair text, the functions of eccentricity, Glpq(e) ,
emanate from the classical Hansen functions, X2’k ; these are defined such that

the true anomaly, v , can be related to the mean anomaly, M , by the expansion

o«

n
(rr) exp(jkv) = z Xn’k(e) exp(joM) , (A-1)
a g
c=-m
T 1 = e2
where a = T+ ecos v ° (A-2)

n,k

v

Then the function Glpq , as defined by Kaulas, is just X with
n=-(2+1),k=2-2p and o =k + q . As noted in section 8, there would

. o s k
be advantages in writing G as G
& & fpq 2q

On muitiplying both sides of equation (A-1) by exp{-j(k + q)M} and then

integrating from 0 to 2n , it follows that
P f a2t
G = ;/ (;) cos{kv - (k + q)M} aM . (A-3)
0

In equation (A-3) the true and mean anomalies, v and M , are linked by
the eccentric anomaly, E . Also, it is advantageous to integrate with respect
to E , rather than M , if numerical quadrature is to be based on a uniform
dissection of the independent variable. But

dM r
3iE 1 e cos E 3 (A-4)

80 we can rewrite (A-3) as
1 f a L
Cypq ™ ;/ (;) cos{kv - (k + )M} dE . (4-5)
0

Here M is related to E by Kepler's equation, the derivative of which gave
(A-4), whilst v is related to E by the equation

g T e




22 Appendix

4
tan }v (l—:—g) tan }E (A-6)

I - e

finally a/r can be eliminated from (A-5) by using (A-4).

A.W. Odell has kindly provided a Fortran-77 program (in double precision)
that implements the definite integral (quadrature) expressed in equation (A-5).
This program, GQUAD, is listed in section A.l. The basis oi che program is the
uniform division of the interval (0,n) into N sub-intervals, over each of which

the integral is computed from the four-strip Newton-Cotes formula,

b

'/ f(x) dx = 30 (7f0 + 32fl + lZf2 + 32f3 + 7f4) ’ (A-7)

a

where £, = fla + li(b -~ a)} for i=0,1, 2, 3, 4 . Equation (A-7) is exact
for polynomials of degree up to 5, so the error in quadrature by GQUAD is

0(1/N6) . This can also be written 0(h6) , where h 1is the width of each strip
of a sub-interval (so that 4Nh = ) ; but here we are not dealing with poly-

nomials, and the convergence is much faster than this suggests.

The program requests the values of e, k, £ and q as input, and then
operates in one of two possible modes. The normal mode finds a suitable value of
N automatically, by starting with N = 2 and then successively doubling it. In
this bisection process, successive estimates of the integral are compared until
the value changes by less than 1 part in 106. At this point the integral is
deemed to have 'converged', and its final value, together with the final value of

N , is printed; clearly, the value of N can only be a power of 2.

The alternative mode of operation requires N to be specified manually.
The mode is selected by attaching a negative sign to e , whereupon the program
requests that the value of N be suppiied. Any even integer is now legitimate
for N, and there is only a single computation of the integral. In the computa-
tion, advantage is taken of a quasi-symmetry between E and 7 - E , such that
the quadrature routine appears to operate between 0 and }m rather than between
O and = . This is why N must be even in the alternative mode of operation:

it can then be halved to operate over the half-interval.

CEnNRe W

To provide examples of the manner in which Glpq (iverges from én s
which is its value for e = 0 , the ratio of the two is plotted in Fig 3 for
various (k,%,q) when e ranges from O to 0.6. It is worth remarking that the

GQUAD output can be used to divine explicit terms, beyond & , in the series

£pq
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E in ez for Ggpq . Thus, for two of the examples plotted, we have
2 4
4 GlS,?,O = ]| 4+ 59e¢” +0(e )
é and
¥ = ]+ 75.5e2 +0(e“) .
F

S e

For the other two, the numerical coefficients are not clean-cut; but,
: approximately,

: C16,7,-1
and

3

6.5e + 245e” + O(es)

7.5e + 222¢3 + 0(e”) .

Cr4,7,1

Though the orbits analysed at resonance usually have e < 0.01 , GQUAD is valid

for large values of e : for example, it gives G 0(0.999) = 0.312042 x 1043,
1]

15,7
the value N = 1024 being required.

e ¢ (L T
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A.2 Listing of Program GQUAD

c PROGRAM GQUAD FOR ECCENTRICITY FUNCTIONS
IMPLICIT DOUBLE PRECISION (A-H, 0-2)
COMMON /CGECC/ E, GI, GJ, GK
EXTERNAL GECC
PARAMETER (PI=3.1415926535897932D0, HPI=0.5D0*PI, EPS=1D-6)
1 WRITE(1, *) 'GIVE: E, K, L, Q'
READ(1, *) E, K, L, IQ
IF(E.GE.1D0) STOP
HMAX = PI/DMAX1(3D0O, DABS(DFLOAT(K)), DABS(DFLOAT(IQ)))

GI = L
6J = K

GK = K + IQ

IF (E.GT.0DO) THEN

G = QINTC(GECC, 0DO, HPI, HMAX, EPS, N)/PI
ELSE

WRITE(1, *) 'GIVE: N (EVEN)'

READ (1,*) N

E = -E
G = QINT(GECC, 0DO, HPI, N/2)/PI
c (ONLY HALF N, BECAUSE QINT GOES ONLY TO HALF-PI)
END IF
WRITE(1, 2) G, N
2 FORMAT ('G IS', G20.12, ' & N IS', I6)
GO TO 1
END

DOUBLE PRECISION FUNCTION GECC(EE)
c COMPUTES INTEGRAND FOR ECCENTRICITY FUNCTION
IMPLICIT DOUBLE PRECISION (A-H, 0-2)
COMMON /CGECC/ E, GI, GJ, GK
PARAMETER (PI = 3.1415926535897932D0)

SQE = DSQRT((1D0 + E)/(1D0 - E))
CEH = COS(EE*0.5D0)
SEH = SIN(EE*0.5D0)

CE = CEH*CEH - SEH*SEH

SE = 2DO*SEH*CEH

GECC = COS (2DO*GJ*DATAN2 (SQE*SEH, CEH) - GK*(EE - E*SE))/

1 (1D0 - E*CE)**GI

GECC = COS (2DO*GJI*DATAN2 (SQE*CEH, SEH) - GK* (PI - EE - E*SE))/
1 (1DO + E*CE)*#*GI + GECC

RETURN

END

ccoQe 9T
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DOUBLE PRECISION FUNCTION QINTC(F, A, B, H4MAX, EPS, N2)

c INTEGRATES FUNCTION F FROM A TO B, BUILDING TO N ( = N2/2)
c SUBINTERVALS BY BISECTION TO REFINE ACCURACY (EXACT FOR
c QUINTICS). PROCESS STOPS WHEN STRIP LENGTH LESS THAN
c H4MAX AND RELATIVE CHANGE IN INTEGRAL LESS THAN EPS.

IMPLICIT DOUBLE PRECISION (A-H, 0-2)

H4 = B - A

SC = H4/45D0

S2 = (F(A) + F(B))*0.5D0

S1 = F({A + B)*0.5D0)

N2 = 2

1 H2 = H4*0.5D0

H = H2+%0.5D0

S = 0DO

X=A+H

DO 2 I =1, N2

S =F(X) + 8

2 X=X+ H2

81 = S1 + 82

QINTC = (16.*S + 6.%S1 + S2)*SC
c TEST FOR CONVERGENCE

IF (N2.GT.2 .AND. DABS(H4).LE.H4MAX .AND. DABS(QINTC - QINTCO)
1 .LT.EPS*QINTCO) RETURN
QINTCO = QINTC

§2 = 51

81 =8

N2 = N2 + N2
H4 = H2

SC = SC*0.5D0
GO TO 1

END

DOUBLE PRECISION FUNCTION QINT(F, A, B, N)

c INTEGRATES A FUNCTION FROM A TO B USING N STEPS
IMPLICIT DOUBLE PRECISION (A-H, O-%)
H = (B - A)/DFLOAT(N)

H1 = 0.25DO0*H

H2 = H1*2DO

H3 = H1*3DO

Cl = H*7D0/90DO
€2 = H*32D0/90D0
C3 = H*12D0/90DO0
X = A

FO = F(X)

QINT = 0DO

DO1I=1,N
F4 = F(X + H)
QINT = QINT + C1*(FO + F4) + C2*(F(X + H1) + F(X + H3)) +
1 C3*F(X + H2)
FO = F4
1 X = A + DFLOAT(I)*H
RETURN
END
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